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Shock Waves
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Shock 

waves

zoomShock wave which is at right angle to the flow is normal 

shock wave and which is inclined to the flow direction is 

known as oblique shock wave.

Since the shock wave is almost an instantaneous 

compression of the gas, it can NOT be described using the 

concept of reversible isentropic process.

The shock wave is a very thin region and the thickness is 

usually on the order of a few molecular mean free paths, 

typically in the order of 10-6 m for air at standard conditions.

Shock waves are the natural consequences of high 

speed flows. There are many aerodynamic applications 

where shock waves are the integral part of the flow field. 

For example, supersonic nozzle flows in overexpanded 

condition, exhaust of rocket engines, passage of high 

pressure compressors and turbines, flow around 

supersonic aircraft (external flows), etc.  
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Normal Shock Waves

The flow is supersonic (M >1) ahead of the normal 

shock, and subsonic (M <1) behind it. (will be shown)

Furthermore, the static pressure, temperature, and 

density increase across the normal shock. However, 

total pressure is decreased.

Though the shock wave is a very thin region in the flow 

field, there is an abrupt/instantaneous change of flow 

properties occur. Flow properties just upstream of the 

shock wave, 1 and just downstream of the wave, 2 

vary considerably. And thus, we need to deal this tiny 

region separately and more carefully. The flow process 

from 1 to 2 is  non-isentropic.

Although a shock wave can move in the flow field, we will 

deal with a fixed (steady) normal shock wave in this 

course (ME 323: Fluid Mechanics-II)

NormalFlow
M > 1

M < 1

(choked)

1 2

non-isentropic
Control volume
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Normal shock wave
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2

Control volume

M2, V2

p1, T1, ρ1 p2, T2, ρ2
p01 > p02

S02 > S01

x

1

1 Conditions just upstream of the shock

2 Conditions just downstream of the shock

Now, we will concentrate only on the region surrounding 

the normal shock wave (very thin region). The following 

assumptions are considered to develop shock relations:

1. Adiabatic flow (no heat transfer to and from the CV)

2. Thickness of the shock wave is very small (A1 ≈ A2).

3. Frictionless ideal flow (μ ≈ 0)

4. Steady 1-D flow.

5. Fluid behaves as ideal gas.

First, consider the mass continuity across the CV:
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Second, consider the momentum equation for the control volume:
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Third, consider the energy equation for adiabatic process 

and no shaft work inside the control volume:
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Normal Shock Waves
Now, use Eqn. (2) and Eqn. (3) in Eqn. (1):
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M2 = f (M1)

This is very useful and important shock relation, relating the downstream Mach no. M2 to 

upstream Mach no. M1 only. 
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When M1 = 1, then M2 = 1; This is the case of an infinitely weak 

normal shock, which is  defined as a Mach wave.

In contrast, as M1 increases above 1, the normal shock becomes 

stronger and M2 becomes progressively less than 1.

Downstream Mach number in terms 

of upstream Mach number, M1.
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𝑀1  → ∞ ∶ 𝑀2 =
𝑘 − 1
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Normal Shock Waves

• M2 is always less than 1 if M1 supersonic. 

• A normal shock wave decelerates a flow almost 

discontinuously from supersonic (M>1) to subsonic 

condition (M<1).

• The static pressure downstream the shock wave increases 

significantly compared to upstream condition.

•  This adverse pressure gradient generates some sort of 

drag which is called the “wave drag” and it has no relation 

with frictional behavior of fluid with this type of drag.

• In supersonic flow, wave drag is most crucial to deal with.

• There will be a loss of total pressure due to appearance of 

shock waves. (p02 < p01)
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Use this expression in the relation of static pressure ratio,

The Mach no. just downstream of the shock is related to 

the Mach no. just upstream of the shock according to:
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In case of air flows (k = 1.4);
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Now the change of entropy across the shock is;
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Recall the isentropic relations for compressible flows:
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Since adiabatic process: T02 = T01 =T0 

Total temperature is remained same.
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Now, use the expressions of temperature ratio and pressure 

ratio, and recall;
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The change of entropy becomes:
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But from the second law of thermodynamics, s2 > s1, so that 
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Total pressure (pressure energy) is lost across a normal shock wave

to mitigate the wave drag.

Home work 
for complete derivation of this expression.
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